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Transient chaos with absolutely continuous conditionally invariant measure is studied, and a
general solution of the Frobenius-Perron equation is presented for complete one-dimensional maps.
In particular, properties of borderline situations exhibiting phase transitions within the framework

of thermodynamical formalism are investigated.
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I. INTRODUCTICN AND SUMMARY

It has become clear in the last few years that transient
chaos plays an important role in nonlinear systems [1-6]
(and references quoted therein). Transient chaos can oc-
cur, for instance, before the trajectory settles down in
phase space on the attractor (which can be simple or
strange as well). The length of the transient depends
on the initial value and even for typical initial conditions
the chaotic behavior of the transient can be often well ob-
served over a considerable time interval. Besides detect-
ing transient chaotic signals, transient chaos has come
into the focus of interest recently because of its connec-
tions to chaotic scattering and deterministic diffusion.

Transient chaos is associated with an invariant object
in phase space, called chaotic repeller (more precisely
chaotic saddle), which is a Cantor-like set. All initial
values lead to trajectories that escape from the neigh-
borhood of the repeller with the exception of points on
it. An important step in the development of the theory
of transient chaos was the recognition that a so-called
conditionally invariant measure can be defined by com-
pensating for the escape on the average [7,8).

The purpose of the present paper is to give a general
solution for the conditionally invariant measure in a class
of complete one-dimensional (hereafter 1D) maps exhibit-
ing transient chaos. Then we discuss, in particular, the
properties of a critical state which is a generalization of
the weak intermittent state of permanent to transient
chaos.

We consider a map

Ziv1 = f(x:), xi € Io, It (1)
with one increasing and one decreasing monotonic
branch, illustrated in Fig. 1. These branches map, re-
spectively, the subintervals I and I;, to the interval I.

Map (1) is not defined for the points in the window
(i-e., for the points in I outside the two subintervals I
and I;). Such points escape from the interval in the
next step and their fates are governed by some dynamics
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whose specification is not needed for our purposes. It is
assumed that map (1) does not have a stable periodic
orbit but can generate erratically-behaving long orbits.
Since — except for initial points whose set is of zero
Lebesgue measure — all the iterates finally escape, this
type of chaos is called a transient one.

Let us define a bipartition with elements Iy, I;, and

(a)

(b) ;

H o n=2

FIG. 1. 1D map generating transient chaos on unit interval
I. Cylinder sets up to level 3 are shown in the lower part of
the figure.
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a corresponding symbolic dynamics ¢ = 0,1. The map
f is complete in the sense that all the possible symbolic
code combinations are allowed. Orbits of length n with
different symbol sequences (i1,...,%,) start from the 27
intervals (cylinder sets)

I = L (V7 E) (o V()
lziim?“l, n=12,.... (2)

m=1

Here f*(I;) stands for the points mapped to I; by k

applications of the map f. (Note that Ii(l) = I;.) The
cylinder sets (2) are shown in Fig. 1 up to level 3. In
the limit n — oo the cylinder sets I;, | = 0,...,2™ — 1,
approach a Cantor-set-like object, the chaotic repeller.
It is assumed that by compensating for the escape from
the interval I, a smooth measure (absolutely continuous
with respect to the Lebesgue measure) exists, whose den-
sity P(z) satisfies the Frobenius-Perron equation [7,8]

P@)=R )

zi€f~ ()

P(zi) (3)
|f* ()]
The eigenvalue R is related to the escape rate x by
x = In R . Here and in the following prime denotes the
derivative. The measure is called conditionally invariant
and plays an important role in the theory of transient
chaos [3,5].

The measure of the cylinder sets of level n is given by

ugn) =R" P(z)dz,

i=0,1,...,2" —1. (4)
)

The prefactor R™ is needed to ensure normalization

2" -1

>omY =1 (5)
1=0

In the limit n — oo u{™ can be considered as the natural
measure on the repeller [9,10].

We summarize below the main results of the paper
along with its organization. In Sec. II we introduce
two types of transformations of complete 1D maps, which
leave the escape rate invariant. In particular, it is pointed
out that starting from the tent map all the maps with a
conditionally invariant absolute continuous measure (and
with the same escape rate) can be reached by a combi-
nation of such transformations. Furthermore, since only
one type of the transformations changes the statistical
properties of the map, we can restrict ourselves to the
application of this type in the rest of the paper. Section
IIT is devoted to studying two limiting situations, where
hyperbolicity becomes violated due to the appearance of
infinite derivatives of the map either at the right or at
the left end of the interval Ip. In the former case the Lya-
punov exponent of the fixed point at the origin is equal to
the escape rate. This situation is shown to lead to a sim-
ilar type of phase transition, within the framework of the
thermodynamic formalism, as the one occurring in per-

manent chaos when weak intermittency is present. There
is, however, an important difference, supported also by
numerical results, namely, that the transition is contin-
uous for k > 0, while it is known to be discontinuous at
the limit of permanent chaos. Finally, a number of fur-
ther phase transitionlike singularities will be pointed out
and discussed.

II. CLASSIFICATION OF COMPLETE MAPS

One can specify a class of maps with the same escape
rate. Obviously we can obtain such maps with the help of
a smooth coordinate transformation, called conjugation,
studied extensively in case of permanent chaos [11,12].
In the following the interval I will be taken, by appro-
priate rescaling, as [0, 1]; then the intervals Iy and I; be-
come [0, Z,,,] and [Z,,, 1], respectively. Introducing the
smooth monotonic function u(x) with u(0) = 0, (1) =1,
we get for the transformed map '

9(x) =u (f(u*(2))),

l—zm,g <z <1, Tm;,g = u(a:mi-:f) (6)

0<z< Tmy,gs

and for the transformed density

_ Py(ul(@)
' (w1 (@))]

One can easily convince oneself that g(z) satisfies the
Frobenius-Perron equation (3) with the same escape rate
k as f(z). Furthermore each map is conjugated to a
symmetric one, i.e., for which f(z) = f(1 —z) is fulfilled,
and consequently without loss of generality we can re-
strict ourselves in the following to maps possessing this
symmetry. The simplest such map is the piecewise linear
map

Py(z) (7

1
fo@) = 2Rz, 0<a< —

1
As suggested by the above notation R proves to be the
eigenvalue of the Frobenius-Perron equation (3), which is
satisfied by (8) with Py(z) = 1 independent of R. As an

example for a map conjugated to fo(x) let us take

w2 (T
u(z) = sin (2 m) (9)
which leads to
1

n/z(1 —x)

When the parameter R in (8) corresponds to the es-
cape rate k = (m —1)In2, m = 1,2,..., the resulting
transformed map consists of the leftmost and the right-
most branches of the Chebyshev polynomial of order 2m
with suitable scaling such that they map the unit inter-
val onto itself with x = 0 as a fixed point. The case

P,(z) = (10)
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m = 1 represents permanent chaos and (9), (10) give the
well-known connection [11] between the logistic and the
tent maps in this situation. For m = 2 the map reads

g(@) = 162(1 — 2)[1 — 4z(1 — )], 7m, = 221, and is
shown in Fig. 2.

When relating symmetric maps by conjugation, u(x)
has a symmetry property as well, namely u(z) = 1—u(1—
z), and if in addition P¢(z) = Ps(1 — ), the conjugation
also preserves this symmetry. As a consequence, all the
symmetric maps conjugated to fo(z) have a symmetric
conditionally invariant density.

Let us now turn to another transformation which can

act upon f(z). It is defined by

f(z) = fo(z) —v(f(2)),
1. (11)

The function v(x) is smooth, single valued and fulfills the
requirements

vi)=v(l—2z); 0<=z<1; v(0)=0;
-1 <v'(z) < +1. (12)
It can easily be shown that transformation (11) leaves the
window invariant. An explicit expression can be given for
the transformed inverse function as follows:

z + v(x)

=) = SR (13)

foil@) =1-f"'(=),
where the subscripts refer to the lower and upper
branches, respectively. The most significant property of
this transformation is that f(z) satisfies the Frobenius-
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FIG. 2. Map with escape rate k = In2, conjugated to the
piecewise linear map (8) with R = 2.
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Perron equation with the same escape rate as fo(z) and
with the density
P(z) =1+ (). (14)

The change in the density due to the transformation has
an odd symmetry (with respect to 1/2). In this sense the
v transformation is transverse to conjugation. Since con-
jugation does not alter the statistical properties, one can
expect that via a v transformation they vary most signif-
icantly. All maps which possess an absolutely continuous
conditionally invariant measure are related to the piece-
wise linear map fo(z) by a combination of conjugation
and v transformation.

R = 1 corresponds to fully developed chaos and the
v transformation introduced here is a generalization of
that for fully developed chaos defined earlier [12-14].

As an example we take

v(z) =dz(l—2z), —-1<d<1 (15)
leading to the piecewise parabolic map
1+4d—-+/(1+d)?—8dRz
fep(z) = ( 2d ) . (16)

The condition v’(x) > —1 arises from the requirement
that f(z) has to be single valued. [Note that then v'(z) <
1 comes from the symmetry of v(z).] One gets from (11),

, _ 2R 1

The modulus of the derivative is bigger than 1 everywhere
in the course of the v transformation if Kk > 0 [and even
for k = 0, except in the limiting case v/(0) = 1 at z = 0].

III. BORDER STATES OF CHAOS

The limiting cases v'(0) = %1 represent border lines of
transient chaos with an absolutely continuous condition-
ally invariant measure. Their nature is clearly shown by
the behavior of f'(z):

v'(0) =1, f(0)=R=e", f(zm)=00  (18)

and

v (0) = —1, f'(0) = o0, f'(Tm,)=R=c¢". (19)
In case of map (16), by changing the parameter d, sit-
uations (18) and (19) are arrived at when d = 1 and
d = —1, respectively.

Case (18) proves to be the more interesting of the two;
therefore we will concentrate on it in the following and
comment on (19) only at the end of the paper.

The existence of an absolutely continuous condition-
ally invariant measure in this limiting situation requires
a connection between the properties of the map at z = 0
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and at £ =~ x,,. In case of the v transformation this is
ensured by the even symmetry of v(z) with respect to
z = 1/2 and leads to the consequence that at the crit-
ical state the condition of hyperbolicity is violated, i.e.,
|f'(2m)| = co. In more detail, if

v(z)=z4+Wz¥+---, w>1l z=0 (20)
then
fil(z) = —w+%w + - z~0 (21)
and
fii=z) = ———+—(1—x)"’ ey, Tl (22)

The order of the maximum of f(z) is 1/w. The density
P(x) approaches 2 when # — 0 according to Eq. (14).
One gets then for the natural measure of the leftmost
cylinder in the limit of large n

p™ (L) ~ 2RI (23)

which, since I(™ ~ [f/(0)]~" = R™™, tends to a nonzero
value. This is in accordance with the general property
of the natural measure according to which the crowding
index is equal to 1 — k/A, where A is the local Lyapunov
exponent [15]. The statement following from Eq. (23)
is stronger since a zero crowding index would still allow
the corresponding measure to tend to zero though slower
than a power law. This behavior leads to a phase tran-
sition within the framework of the thermodynamic for-
malism (see Ref. [16] for a review of the thermodynamic
formalism). To show it let us introduce in the usual way
the partition sum

2" —1
Zya) = Y [wUM)" (24)
=0
and the free energy
1 1 n
Fu(q) = —= lim —InZ7}(q), (25)

qn—ooon

which is closely related to the Rényi entropies K(q)
[17,18,14], namely

K(q) = Fu(q), g #1. (26)

For ¢ = 1 the Rényi entropy becomes the Kolmogorov-
Sinai (KS) entropy

2" —1

K(1) = lim = 3 w(I) ().  (27)

n—oo N
1=0

K =

In these formulas ¢ plays the role of the inverse tempera-
ture. Note that the entropies as defined by (26) and (27)
are in fact mean entropy rates.

The existence of a phase transition follows from the
upper bound for the Rényi entropy [19,20]

K@< —2 lim tin

f 1. 28
g—Tnoen "a(g) 17 (28)

Since K(gq) cannot be negative, (28) and (23) immedi-
ately lead to

K(q) =0, for ¢ > 1. (29)

A similar result for permanent chaos in the critical state
(corresponding to R = 1) has been obtained [19-24], with

the essential difference that in permanent chaos u(Ié"))
has a power law decay when n tends to infinity. A basic
question is the nature of the transition at ¢ = 1. We turn
now to its discussion.

The starting point is that the natural measure on the
repeller develops a é function singularity at £ = 0. The
strength of this § function is not determined solely by
the leftmost cylinder set but an infinite number of other
cylinder sets contribute as well. Consider the cylinder
sets at the nth level and then take their mth preimages
on the left branch of the map. The total contribution to
the strength of the § function is provided by the quantity

2" —1
— % : —my(n)
M = lim lim 2_; n(f ™). (30)

The numerical result for map (16) is shown in Fig. 3.
It suggests that at least for large enough R values the
strength of the § function is unity, i.e., the total measure
of the rest of the repeller is zero. If this is the case, it can
easily be seen that the KS entropy K (1) = 0, while K(q)
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FIG. 3. Strength of the § function in the natural measure
of the map (16) with d = 1 for different escape rates as a
function of n related to the number of cylinders 2™ covering
the repeller.
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can be nonvanishing for ¢ < 1. Since the free energy
is related to the Rényi entropy by Eq. (26) this means
that the phase transition is continuous. If this is true for
any R > 1 then a line of continuous phase transitions is
present, which terminates in a discontinuous transition
at R = 1, where K(1) > 0. This behavior can be valid,
if the strength of the § function drops discontinuously to
zero when R — 1. Figure 3 can then be interpreted as
exhibiting a kind of critical slowing down in the sense
that the real strength of the § function can be observed
for larger and larger n values when approaching the limit
of permanent chaos, R = 1.

A further support of this possibility can be obtained
by investigating the Lyapunov exponent. Namely, if the
part of the repeller outside £ = 0 has zero measure, the
average Lyapunov exponent is equal to k = InR when
R > 1 while it is known to be 0.5 at R = 1 [25,12] which
means that a discontinuity shows up in the Lyapunov
exponent when R — 1. This tendency is clearly exhibited
by the numerical results in Fig. 4 for the map (16) with
d=1.

It has to be emphasized that the possibility of M =1
for R>R. >1butl > M >0for Re > R > 1
cannot be excluded according to the numerical data. It is
straightforward, however, to adjust the above discussion
of the phase transition to this situation if it proves to be
the case.

A few words are necessary concerning the other lim-
iting situation (19). In this case there is no qualitative
change in the thermodynamic properties when one leaves
permanent chaos and enters the territory of transient
chaos. Namely, since f/(0) = oo, it can easily be seen that

p(I((,")) tends to zero faster than exponentially. From this
circumstance K(g) = oo follows for ¢ < 0, in the same
way as in the case of permanent chaos [23,13,24].
Finally we should mention that at the limiting situa-
tion (18) the generalized dimensions D(q) [17,26,27] ex-
hibit a phase transition like singularity, too. Namely, by
partitioning the interval I to uniform boxes the proba-
bility of the leftmost box remains finite when the size of
the boxes goes to zero. Then it follows by applying an
inequality for D(q) [23] that D(gq) =0 for ¢ > 1. An es-
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FIG. 4. Lyapunov exponent for the map (16) with d = 1
as a function of R related to the escape rate.

sential difference, however, as compared to K(g) is that
the singularity in D(q) disappears in the limit of perma-
nent chaos, K — 0. On the other hand in both of the
limiting cases (18), and (19) a phase transition has been
found in D(gq) at ¢ = —1 in case of permanent chaos [20].
The properties of these phase transitions in the region
£ > 0 would be worth studying.
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